YES 0.676 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/Queue.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule Queue
  ((queueToList :: Queue a  ->  [a]) :: Queue a  ->  [a])

module Queue where
  import qualified Prelude

  data Queue a = [a] [a] [a


  queueToList :: Queue a  ->  [a]
queueToList (Q xs ys _) xs ++ reverse ys



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Queue
  ((queueToList :: Queue a  ->  [a]) :: Queue a  ->  [a])

module Queue where
  import qualified Prelude

  data Queue a = [a] [a] [a


  queueToList :: Queue a  ->  [a]
queueToList (Q xs ys vvxs ++ reverse ys



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule Queue
  (queueToList :: Queue a  ->  [a])

module Queue where
  import qualified Prelude

  data Queue a = [a] [a] [a


  queueToList :: Queue a  ->  [a]
queueToList (Q xs ys vvxs ++ reverse ys



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldl(vy4, vy3110, vy31110, :(vy311110, vy311111), h) → new_foldl(new_flip(vy4, vy3110, h), vy31110, vy311110, vy311111, h)

The TRS R consists of the following rules:

new_flip(vy4, vy3110, h) → :(vy3110, vy4)

The set Q consists of the following terms:

new_flip(x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_psPs(:(vy300, vy301), vy31, h) → new_psPs(vy301, vy31, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: